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Abstract. The free energy of the Coulomb gap problem is expanded as a set of Feynman
diagrams, using the standard diagrammatic methods of perturbation theory. The gap in the one-
particle density of states due to long-ranged interactions corresponds to a renormalization of the
two-point vertex function. By collecting together the leading-order logarithmic corrections we
have derived the standard result for the density of states for the critical dimension,d = 1. This
method, which is shown to be identical to the approach of Thouless, Anderson and Palmer to
spin glasses, allows us to derive the strong-disorder behaviour of the density of states. The use
of the renormalization group allows this derivation to be extended to all disorders, and the use
of an ε-expansion allows the method to be extended tod = 2 andd = 3. We speculate that
the renormalization group equations can also be derived diagrammatically, allowing a simple
derivation of the crossover behaviour observed in the case of weak disorder.

1. Introduction

The phenomenon of the Coulomb gap has been known of for 20 years [1] and has been
observed both in disordered semiconductors below the Anderson transition [2] and in the
high-magnetic-field quantum Hall fluid [3]. In any system of localized electrons, when
electrostatic interactions are taken into account, a soft gap appears in the density of states at
the Fermi level. This classical effect is the result of the interplay of disorder, long-ranged
interactions, and the discreteness of electric charge. The Hamiltonian of the system [1, 2] is

H [ni ] =
∑

i

φini + e2
∑
i 6=j

(ni − 1
2)(nj − 1

2)

rij

(1)

where theni are occupation numbers. The Hamiltonian contains two terms; the first is
dependent upon disorder and the second upon Coulomb interactions. Theφi are uncorrelated
energies representing the effects of disorder, and macroscopic thermodynamic quantities
must be obtained by averaging over them according to the distribution

〈F 〉 = 〈F [φi ]〉 =
∫ +∞

−∞

∏
i

dφi√
2πA2

exp

(
−

∑
i

φ2
i

2A2

)
F [φi ]. (2)

There are two dimensionless parameters governing the problem. The one describing the
relative strengths of disorder and interactions is

γ = ε0

A
= e2

aA
(3)
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wherea is the lattice spacing, soε0 gives a measure of the strength of the nearest-neighbour
interaction. We consider the problem on a lattice, although because the system is dominated
by long-range behaviour over distances of the order of the correlation length (r ∼ e2/T )
this should be irrelevant to the physics of the problem. The standard Coulomb gap problem
for strong disorder corresponds toγ � 1, whilst γ � 1 corresponds to weak disorder. The
dimensionless parameter describing thermal effects is

ξ = ε0

T
= e2

aT
. (4)

Because the distribution of theφi is symmetric underφi → −φi , the Hamiltonian is
symmetric underφi → −φi, ni → 1 − ni , so the chemical potentialµ = 0 and the total
number of particles is fixed:∑

i

ni = N/2. (5)

We would like to derive the one-particle density of states (OPDOS),g(ε), defined as the
distribution function of the single-site energies:

εi =
(

∂H

∂ni

)
nj

= φi + e2
∑
j 6=i

(nj − 1
2)

rij

. (6)

At non-zero temperatures the problem was treated by Mogilyanskii and Raikh [4] and in
particular it was shown that the distribution of electrons over sites obeys Fermi–Dirac
statistics:

〈ni〉 = nFD(εi) = 1

1 + exp(εi/T )
. (7)

Once the OPDOS is known, we can derive many useful macroscopic quantities such as
the screening law and the conductivity.

All standard discussions of the Coulomb gap focus on the strong-disorder problem,
although we will also consider the case of weak disorder. In this case we might expect
a crystalline ground state and a hard gap. However, as noted by Efros [5], the freezing
temperature of a pure ionic crystal with no disorder is numerically smaller by about two
orders of magnitude thanε0. Thus there is a very wide range of temperatures between this
freezing temperature andε0 for which the weakly disordered Coulomb gap system behaves
like a strongly correlated classical fluid.

In section 2, we demonstrate that the Coulomb gap partition function can be expanded
as a series of Feynman diagrams. The general philosophy is to expand the partition function
ln Z[φi ] as a series of diagrams and only at the last moment to perform the averaging over
disorder (2). This method is identical to the method used by Thouless, Anderson, and
Palmer (TAP) [8] to study the spin-glass problem; we discuss this in section 3. In the next
section, section 4, we give a simple argument for the lack of any low-temperature phase
transition for the critical dimensionalityd = 1. This means that the derivation of the leading
approximation to the one-particle density of states for the Coulomb gap problem given in
section 5 does indeed sum the most important set of diagrams, and that any divergences
in other sets of diagrams must cancel. The standard results ford = 2 andd = 3 can be
obtained by means of anε-expansion forε = d − 1, as explained in section 6. Finally,
we speculate that renormalization group theory arguments can allow a derivation of the
weak-disorder limit in which the standard results for the density of states break down.
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2. Diagrammatic perturbation theory for the Coulomb gap

The density of states is calculated by means of a diagrammatic perturbation theory. Polyakov
[6] shows how to convert classical Ising-like models into a continuous field problem, which
can be expanded into the Feynman diagrams well known from quantum field theory, and
we use a slightly modified version to take account of disorder.

The partition function is rewritten using the identity

Z[φi ] =
∑
[ni ]

exp

(
−H [ni, φi ]

T

)

=
∑
[ni ]

exp
1

T

(∑
i

φi

(
ni − 1

2

)
+ e2

∑
i 6=j

(ni − 1
2)(nj − 1

2)

rij

)

=
∑
[ni ]

exp

(∑
i

φi

T

d

dχi

|0 + e2
∑
i 6=j

T

rij

d

dχi

|0
d

dχj

|0
)

exp
∑

i

χi(ni − 1
2)

T
(8)

leaving the result in a form in which the summation over [ni = 0, 1] can be easily performed,
using the identities:∑

[ni ]

exp
∑

i

χi(ni − 1
2)

T
=

∏
i

cosh
χi

2T
= exp

∑
i

ln cosh
χi

2T
(9)

exp
∑

i

φi

T

d

dχi

exp
∑

i

ln cosh
χi

2T
= exp

∑
i

ln cosh
χi + φi

2T
(10)

to yield the formally exact result

Z[φi ] = exp

(∑
i 6=j

−T e2

rij

d

dχi

|0
d

dχj

|0
)

exp−
∑

i

ln cosh

(
χi + φi

2T

)
. (11)

Our general approach will now be to perturbatively expand lnZ[φi ] as a series of connected
Feynman diagrams, similar to the ‘locator’ perturbation series of Anderson [7], and only at
the very last stage to perform the averaging overφi . This corresponds to the approach of
Thouless, Anderson and Palmer (TAP) [8] to spin glasses.

The diagram rules for the series expansion of lnZ are as follows, wherenFD(φ) is the
Fermi–Dirac function.

(i) Each vertexi with ni lines coming out of it gives a factor of

−
(

T
d

dφi

)ni

ln cosh
φi

2T
=

(
T

d

dφi

)ni−1(
nFD(φi) − 1

2

)
. (12)

(ii) Each line fromi to j gives a factor of

−e2

rij T
. (13)

(iii) There is a symmetry factor 1/|G|, where|G| is a combinatorial factor equal to the
order of the symmetry group of the diagram. This standard factor [9] is well known from
statistical and quantum field theories.

When it comes to averaging over disorder, we note that the disorder-averaged bare
n-point vertex function is∫ ∞

−∞
g0(φ) dφ

(
T

d

dφ

)n

ln cosh
φ

2T
. (14)
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Integrating this by parts, we can see that it equals∫ ∞

−∞
T dx

(
d

dx

)n−2

g(T x)

(
d

dx

)2

ln coshx ≈ πT n−1

(
d

dx

)n−2

x=0

g(x) (15)

so for all non-pathological distributions of disorder (such as, for example, the Gaussian (2))
the bare two-point vertex function is

λ2 = πT ad

A
(16)

(whered is the dimensionality of space) and higher vertex functions disappear like powers
of T/A:

λn ∝
(

T

A

)n−1

(17)

and so are negligible in our calculations to leading logarithmic order. In the case of a ‘top-
hat’ distribution of local site energies, as used in numerical simulations, theλn disappear
like exp(−A/T ) for n > 2. Thus to leading order, only two-point vertices survive after
averaging. Note that the bare two-point vertex function is proportional to the non-interacting
density of statesg0, and that the renormalized two-point vertex function is given, after
averaging, by〈

sech2
εi

2T

〉
= T adg (18)

whereg is the density of states at the Fermi level as a function of temperature.

i           j           k

Figure 1. An example of a Feynman diagram containing a connection; this represents the
possibility i = k.

3. The relationship between the Coulomb gap and the TAP treatment of spin glasses

The idea of performing a diagrammatic expansion of lnZ and of only performing the
averages over disorder at the last moment is identical to the TAP theory of spin glasses [8].
The Coulomb gap problem is in some senses simpler than the spin-glass problem, because
for A � T only two-point vertices survive after averaging. The only reason that the field
theory is not a trivialφ2-theory is the possibility that more than one vertex could represent
the same site, so if for examplei = k, thenφi andφk will no longer be independent. We
represent this case by Feynman diagrams including ‘connections’ (see figure 1). As in the
diagrams for the conductivity of a dirty metal [13], it is these connections which make the
theory non-trivial, in that there are one-particle irreducible diagrams [9] more complex than
a single bare two-point vertex.

In the next section we will show that a certain set of Feynman diagrams (see figure 2)
which we will call the ‘maximally crossed’ diagrams, are larger by O(A/ε0) than any others,
and thus dominate the expression for the density of states.
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+ ++ + +...+ +

Figure 2. Diagrams contributing to the standard Coulomb gap density of states; these ‘maximally
crossed’ diagrams are larger by O(A/ε0) than all others.

This behaviour is identical to that of spin glasses, for which a certain set of diagrams is
larger than any others by O(z) wherez, the coordination number, is assumed large. However,
in spin glasses, the sum of a set of loop diagrams incorporating four-point vertices diverges
at the spin-glass temperature, signalling the onset of replica symmetry breaking (RSB).
However the TAP approach allows expansions around frozen-in spins, and the method is
‘fail-safe’ in the sense that if we are expanding about a state which is not a global minimum
of energy, we will get negative or zero eigenvectors of the response matrix, and a negative
or infinite susceptibility. The low-temperature state is marginally stable [11] (meaning that
the eigenvalues of the stability matrix are distributed all the way down to zero) but the
TAP method holds up under these circumstances. The marginal stability of the system is
precisely due to the exponentially large number of metastable states.

In section 4 we note that there exists a simple physical argument for why no such phase
transition can occur at low temperature in the Coulomb gap problem ford = 1. Thus any
sets of diagrams whose sums do diverge at low temperatures must cancel with other such
diagrams. Ford = 2 andd = 3 the question of whether or not a glass transition exists is
inconclusive, although this does not affect our arguments.

Anderson [10] demonstrates a derivation of the low-temperature distribution of effective
local fields in the spin-glass problem which is exactly analogous to the standard derivation of
the density of states in the Coulomb gap [2]. However, because of the onset of RSB at low
temperatures, following a rather intricate method due to Bray and Moore [11] is necessary
in order to perform a perturbation theory expansion around the non-trivial ground state of
the spin glass, although their method is based on a locator perturbation theory—essentially
the same as our calculation in this paper. Bray and Moore define a Green’s function, which
when averaged over disorder, gives exactly (18).

The Coulomb gap is effectively a variant of the random-field ferromagnet with long-
ranged interactions. Bray [12] confirms that whilst the random-field ferromagnet displays
low-temperature anomalies in the specific heat (again due to marginal stability), it does not
have RSB.

4. The absence of a low-temperature phase transition ford = 1

As mentioned in the previous section, we are performing a perturbation expansion around
a trivial ground state. Thus it is essential that we sum the diagrams at a temperature higher
than that of any phase transition, and we will show that ford = 1 there is no such transition.
Consider a 1-d Coulomb gap system with small but finite disorder,γ � 1, at T = 0. The
system will form into domains of perfect ionic crystals separated by domain walls. Suppose
that the density of domain walls isN , and hence that the mean number of sites in a single
domain isN−1: the limit γ � 1 corresponds toN � 1. Then it is possible to make a
simple argument similar to that of Imry and Ma [14], showing that the free energy has a
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minimum for a finite domain wall density, of order

Nc ∼ A2

ε2
0

(19)

and so any disorder, no matter how small, destroys long-range order ford = 1. Thus for
this critical dimensionality there is no low-temperature phase transition, and we are safe in
the knowledge that our perturbation theory is around a stable minimum.

Vojta [15] shows that within the uncontrolled approximation of the spherical model,
the Coulomb gap system has a low-temperature transition to a phase with long-range order
for d > 4, whereas ford 6 4 there is no such transition. Monte Carlo simulations are
inconclusive on the question of whether there is a phase transition ford = 2, d = 3 or
not [16, 17]. Studies of a related system, the Coulomb glass, show a phase transition for
d = 3 [18] but not ford = 2 [19]. All of the numerical simulations show clearly that
the Coulomb gap is well developed at temperatures well above that of the suspected glass
transition. This gives us a justification for disregarding the glass transition and performing
an expansion around the trivial ground state.

5. Deriving the density of states within perturbation theory

We discuss first the critical dimensionalityd = 1, because the divergences encountered here
are logarithmic and hence tractable to the renormalization group. We mention later how the
results are modified for the more severe divergences ford = 2, d = 3. We aim to derive
the results of Raikh and Efros [20] for the Coulomb gap with strong disorder:

g = g∞ = g0

1 + e2g0 ln(ε0/T )
(20)

and to show how these are modified for weak disorder to the crossover behaviour observed
by Pikus and Efros [21]:

g ≈ A

ε0
g∞ + 1

e2
exp(−αε0/T ). (21)

We note that heuristically, we expect the low-disorder density of states to behave like the
Boltzmann function exp(−αε0/T ) where the typical energy of excitations isαε0.
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Figure 3.The Dyson equation giving all the leading logarithmic terms in the density of states.

We have already discussed how the diagrammatic perturbation expansion ofg can be
obtained. The ‘maximally crossed’ diagrams (see figure 2 for maximally crossed diagrams
to orderg2

0 ) are larger by O(ε0/A) than any diagrams containing unpaired vertices. Before
averaging over disorder these diagrams give

sech2
(

φi

2T

)
= sech2

(
εi

2T

)
− sech4

(
εi

2T

)
sech2

(
εj

2T

)(
− e2

rij T

)2

−sech4
(

εi

2T

)
sech4

(
εj

2T

)(
− e2

rij T

)3

−sech6
(

εi

2T

)
sech4

(
εj

2T

)(
− e2

rij T

)4

+ · · · . (22)
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We first perform the spatial integration, then by inspection sum the series. As the final step
of the calculation, we can now perform the averaging over disorder (2) to give, using (18),
and to logarithmic accuracy,

g ≈ g0 − e2g2
0

2
ln

(
1 + ε2

0

T 2

)
+ · · · ≈ g0 − e2g2

0 ln
ε0

T
. (23)

As we would expect, there is the same logarithmic behaviour for a(1/rd)-potential ford
spatial dimensions. For the Coulomb gap ford = 1 the divergences are sufficiently mild
that we can collect together the leading-order logarithmic terms depicted in figure 3 to give
an expansion forg in terms ofg0:

g ≈ g0 − e2g2
0 ln

ε0

T
+ e4g2

0 ln2 ε0

T
− · · · (24)

so the strong-disorder case can be derived as a resummation of all the leading-order
logarithmic terms. A more satisfactory mechanism for collecting together all terms of the
same magnitude is to use the renormalization group equations, and instead of considering a
perturbation expansion forg, to derive an expansion for theβ-function. This is discussed
in the next section.

6. Renormalization group theory

We begin the renormalization group treatment by noting that we wish to express the
renormalization group equations in terms of dimensionless quantities, such as the partition
function Z (8), and

0 = e2ad−1g (25)

which is the probability that any site is within the gap. We will express0 in terms ofξ ,
where

ξ = rT

a
= ε0

T
(26)

where the correlation length associated with a temperatureT is [22]

rT = e2

T
. (27)

The β-function is

β(0) = d ln0

d lnξ
= β0 + β10 + β20

2 + · · · . (28)

For the case of strong disorder, solving the following equation for theβ-function:

β(0) = −0 (29)

together with the boundary condition0 → 00 asξ → 0, gives

0 = 00

1 + 00 ln ξ
gT (0) = g0

1 + e2g0 ln(ε0/T )
≈ 1

e2 ln(ε0/T )
(30)

which is exactly the result of Raikh and Efros for the density of states ford = 1 with strong
disorder (20). In other dimensionalities, anε-expansion gives theβ-function as

β(0) = −(d − 1) − 0 (31)

which can again be solved with the boundary condition0 → 00 asξ → 0 to give

0 ∝ ξ−(d−1) gT (0) ∝ T d−1

e2d
(32)
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which is the standard result of Efros and Shklovskii [2]. Thus we reach our main conclusion,
that the TAP method for solving the spin-glass problem is an identical approximation to the
Efros–Shklovskii method for obtaining the density of states of the Coulomb gap.

We note that the(d − 1)-term can be derived using hyperscaling. The system has a
critical point which has been moved toT = 0, and the correlation length (27) implies a
critical indexν = 1, so from hyperscaling, the heat capacity must be proportional toT d−2

and the density of states toT d−1.
In the limit of weak disorderγ � 1, the standard results for the density of states break

down [21], and in this section we explain how to use the renormalization group equation
to derive the behaviour in this regime. The renormalization which we are performing
corresponds to a change in the disorder,γ , of the system. As noted in section 5, we expect
a Boltzmann-like behaviour for the density of states at low disorder:

0 = 0∗ exp

(
−ε0

T

)
ln 0/0∗ = −ξ β(0) = ln 0/0∗ (33)

where0∗ is an order unity constant. Thisβ-function is a result which we expect to be
universal at low disorder. By solving equation (28) for the modifiedβ-function which
crosses over between the weak-disorder and strong-disorder limits,

β(0) ≈ −(d − 1) − 0 (0 � 1) (34)

β(0) ≈ ln 0/0∗ (0 ∼ 0∗) (35)

with again the same boundary conditions0 → 00 as ξ → 0, we obtain a density of
states with a crossover behaviour which ford = 2 coincides with that (21) observed in the
numerical simulations by Pikus and Efros [21].

����������

-1

beta-function

-2

d=2

d=3

d=1

log(gamma)

Efros-Shklovskii Crossover Weak disorder

Figure 4. The scalingβ-function d ln0/d lnξ plotted as a function of ln0.

All the information in equations (29), (34), (35) can be summarized as in figure 4.
Any glassy phase transition or crystallization such as those discussed in section 4 would
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Figure 5. The first non-zero term in the perturbative expansion of theβ-function. The wavy
line represents a(φ d/dφ)-term.

constitute a breaking of universality in the region ln0 ∼ 0. However, even for infinitesimal
disorder, the site energies will have a spread of orderε0 and 0 will be of order unity, so
this region is of little physical significance.

As noted earlier, there is a crossover between the strong-disorder (Efros–Shklovskii)
and weak-disorder (Boltzmann) behaviour. Ford = 1 this occurs at a value of

0 = 0c = a + b ln 0∗ (36)

with a and b order unity constants, whilst ford = 2 the modified renormalization group
equations give exactly the DOS observed in [21].

The corrections to hyperscaling in the RHS of (28) can be obtained as a systematic
perturbation series by using the identity

d〈ln Z〉
d lnT

=
〈
−

∑
i

φi

d lnZ[φi ]

dφi

〉
−

〈
e2 d lnZ[φi ]

de2

〉
(37)

which follows from (11). Thus we can develop a perturbation theory forβ, the first non-
zero term of which (see figure 5) corresponds to the standard Coulomb gap result (29),
(34). We believe that by evaluating further terms in the series we will obtain a series which
interpolates smoothly between (34) and (35).

7. Conclusions

The essence of our paper is in linking two separate pieces of physics, the spin-glass problem,
and that of the Coulomb gap. We have demonstrated that the standard results for the density
of states in the Coulomb gap can be derived by a method identical to the TAP method in spin-
glass theory. The Coulomb gap density of states plays the part of the renormalized two-point
vertex function in an effective-field theory. Ford = 1 we can perform the renormalization
directly by summing a dominant set of diagrams to obtain the strong-disorder limit of the
Coulomb gap. The results ford = 1 suggest the use of the renormalization group to derive
this result for any dimensionality, and to extend the result to the case of weak disorder.
It is shown how a diagrammatic expansion for theβ-function can be used to derive the
renormalization group equations. We hope to use this formalism to derive the properties of
systems with weak disorder in a future paper.
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